Mechanical tuning of the evaporation rate of liquid on crossed fibers

Abstract

We investigate experimentally the drying of a small volume of perfectly wetting liquid on two crossed fibers. We characterize the drying dynamics for the three liquid morphologies that are encountered in this geometry: drop, column and a mixed morphology, in which a drop and a column coexist. For each morphology, we rationalize our findings with theoretical models that capture the drying kinetics. We find that the evaporation rate depends significantly on the liquid morphology and that the drying of liquid column is faster than the evaporation of the drop and the mixed morphology for a given liquid volume. Finally, we illustrate that shearing a network of fibers reduces the angle between them, changes the morphology towards the column state, and so enhances the drying rate of a volatile liquid deposited on it.

Publication
Langmuir

Related